
ADR: Frontend Tech - Metaframework

 Relevant data

Why a metaframework? A metaframework helps us build in a more unified manner, such as how routing should be done, while having

support for SSR and other patterns. It also allows us to make complex multipart mutations hidden from the client, such as editing a user.

All metaframeworks suffer from major overlap with a graphql document cache, since the graphql cache wants to be responsible for querying

& mutations to ensure their internal caches are kept updated. Metaframeworks can still fill the cache during SSR with SSR Exchange. At the

same time, State Management | Remix could be skipped entirely on the client, but with its own set of tradeoffs around using APIs to

build a PWA.

 Options

Next

The “king” of React metaframeworks in popularity State of JavaScript 2022: Rendering Frameworks . Their deep relationship with

React’s core has allowed them the opportunity to develop “ahead of the curve”.

Pros

No other framework has this level of “integration” (“use server' & “use client”)

Most popular metaframework, so lots of resources

Even part of React’s list of “recommended”: Start a New React Project – React

Has already been utilized in eTicket

Lots of third party libraries already integrate with it

Fuse: TypeScript API Framework

Cons

Has fought against the rest of the community when it comes to tooling

Cannot deploy cleanly to non-Vercel providers without utilizing OpenNext (even SST relies on OpenNext and run it)

Utilizes their significantly slower Turbopack

Next 14 has been fairly divisive among previously enthusiastic users

Significantly worse DX from how slow it is

Impact HIGH

Driver @gw

Approver

Contributors

Informed Engineering

Due date Jan 26, 2024

Resources ADR: Frontend Tech

Status COMPLETE

https://formidable.com/open-source/urql/docs/advanced/server-side-rendering/
https://remix.run/docs/en/main/discussion/state-management#state-management
https://remix.run/docs/en/main/discussion/state-management#state-management
https://2022.stateofjs.com/en-US/libraries/rendering-frameworks/
https://2022.stateofjs.com/en-US/libraries/rendering-frameworks/
https://react.dev/learn/start-a-new-react-project#nextjs
https://react.dev/learn/start-a-new-react-project#nextjs
https://fusedata.dev/
https://fusedata.dev/
https://bisonok.atlassian.net/wiki/spaces/ENG/pages/670859335
https://bisonok.atlassian.net/wiki/spaces/ENG/pages/670859335

Remix

Up until very recently Remix was not intended to be used solely as a CSR (client side rendered/routed) only framework, but rather a

combination of CSR & SSR. Remix is backed by Shopify after “buying the team”. Remix vs Next.js

Pros

One of the earliest metaframeworks

Significantly more agnostic among cloud providers

SST support, although possibly not for the new Vite based

Has recently switched to aligning with the larger community by utilizing Vite

Good support for utilizing newer features sooner with Future Flags | Remix

Corporate backer

Not relying on React canary builds

Not relying on patching fetch

Cons

Vite is still labeled “unstable”

SPA mode is labeled “unstable”

Historically react-router has been weak on type safety making tanstack router overall better

Vite based

This encompasses utilizing libraries built on top of Vite itself such as Vike . This allows more customization and less buy into a specific

metaframework. It also offers choosing alternatives that can offer better DX, such as tanstack router.

Pros

“Raw” Vite makes it easier to keep up with Vite

Independent of any framework

Aside from Next all other frameworks are utilizing Vite anyway

Cons

No corporate backer like Next & Remix

Tend to require more setup than alternatives

Often small teams or single developer working on them

Less resources for utilizing them

No specific SST integration, making deployment more complex

Astro

Aside from Vite based solutions, the only framework agnostic solution out there. It also tops interest, retention, and lowest hate of it.

Pros

One of the fastest options out there, Movies app in 7 frameworks - which is fastest and why?

One of the few with integrated view transitions support

Can run multiple frontend frameworks side-by-side allowing easier transitions to or from

Early adopter of Vite, so it just works already well with it

SST integration

Cons

Geared more toward MPA first and foremost

Additional complexity of building CSR/SPA focused apps that are highly dynamic

https://remix.run/blog/remix-vs-next
https://remix.run/blog/remix-vs-next
https://remix.run/docs/en/main/start/future-flags
https://remix.run/docs/en/main/start/future-flags
https://vike.dev/
https://vike.dev/
https://www.builder.io/blog/movies-app-in-7-frameworks-which-is-fastest-and-why
https://www.builder.io/blog/movies-app-in-7-frameworks-which-is-fastest-and-why

Multiframework isn’t free and they cannot share state trivially

Sponsored, but not “ran” by someone who bank rolls it

Recommendation

Remix is the safest choice out of these for a more React centric approach. It allows to start as a fully CSR application without having to start

server side. Additionally, it avoids Vercel’s Next provider specific functionality or relying on a solution like OpenNext. However, because Vite

& SPA mode are both unstable, some plugins & tools have yet to be updated for it, this includes SST that still relies on the old esbuild

version of building Remix.

TLDR

Remix

Decision

For now we’ll be punting on this decision and reevaluate the need for it later. We’re going to focus on improving the React written today first

and as some of the solutions out there mature more we can retake a look.

