
ADR: Frontend Tech - Frontend Framework

 Relevant data

Rather than assuming we cannot or should not change frontend frameworks this exams the possible choices out there.

 Options

React

Currently the “standard” for frontend frameworks and what we mostly utilize. This is by far the most popular framework, react vs solid-js v

s svelte vs vue | npm trends .

Pros

Popularity means increased access to tools, libraries, and community

Easiest to hire for and plenty of material for training

React Native is arguably the strongest part of React today (could consider this separate)

“Good enough”

Internally people have varying levels of knowledge (can help others)

Cons

Footguns galore

Easy to have poor rendering performance that has negative impact (flex ticket has/had this happening)

Larger bundle size than other frameworks

Worse performance than other frameworks

Baked in primitives are exceedingly primitive and often bad

State management is poorly compared to other frameworks and libraries

Internally people have varying levels of knowledge (requires more time helping avoid footguns)

Has been promising React Forget for over 3 years

Next ↔︎ React relationship seems problematic

Impact HIGH

Driver @gw

Approver

Contributors

Informed Engineering

Due date Jan 26, 2024

Resources ADR: Frontend Tech

Status COMPLETE

https://npmtrends.com/react-vs-solid-js-vs-svelte-vs-vue
https://npmtrends.com/react-vs-solid-js-vs-svelte-vs-vue
https://npmtrends.com/react-vs-solid-js-vs-svelte-vs-vue
https://bisonok.atlassian.net/wiki/spaces/ENG/pages/670859335
https://bisonok.atlassian.net/wiki/spaces/ENG/pages/670859335

Vue

Only utilized for a portion of eTicket and was not maintained (v3 came out in 2020 and the package.json v2 is being utilized). Nuxt, utilized

by eTicket, hindered adoption of Vue 3 as it took them 2 years to move to it (Announcing 3.0 · Nuxt Blog). Vue 3 was released on

September 2020, Announcing Vue 3.0 "One Piece" | The Vue Point , but then took over a year to become the default, Vue 3 as the N

ew Default | The Vue Point on Jan 2022.

Pros

Community appears to be producing as much if not more than React today

vite & vitest are examples of projects worked on by many members of that community

Is working on “Vapor Mode” to improve performance

Less footguns

More first class functionality such as Pinia

Faster than React

Has largely analogous projects to React such as Nuxt

Cons

We started to move away from it

Likely have less knowledge around this

Fits an intersection of more popular than other frameworks, but also slower than the others

No construct in SST for Vue’s metaframework(s)

Similar but still different than React

Svelte

Not utilized currently.

Pros

Svelte’s compiler is effectively what React wants to build to solve the inherit framework problems

SvelteKit is also supported in SST

Smaller community with less fragmentation

Svelte 5 is likely to become one of the fastest frameworks based on preview (Interactive Results)

Moving to “signals” and general improvements

State of JavaScript 2022: Front-end Frameworks (2023 not yet released), puts Svelte near the top on many aspects such as

retention & interest

Interest makes hiring for a smaller framework fall into The Python Paradox

Cons

Fairly different than others due to leveraging a compiler

Larger learning curve than Vue

Smaller community than Vue

No knowledge within company

Solid

Not utilized currently

Pros

Has historically pushed what everyone else is trying to do or is now doing

Signals, fine grained reactivity

One of the fastest & smallest frameworks available

https://nuxt.com/blog/v3
https://nuxt.com/blog/v3
https://blog.vuejs.org/posts/vue-3-one-piece
https://blog.vuejs.org/posts/vue-3-one-piece
https://blog.vuejs.org/posts/vue-3-as-the-new-default
https://blog.vuejs.org/posts/vue-3-as-the-new-default
https://blog.vuejs.org/posts/vue-3-as-the-new-default
https://krausest.github.io/js-framework-benchmark/2023/table_chrome_120.0.6099.62.html
https://krausest.github.io/js-framework-benchmark/2023/table_chrome_120.0.6099.62.html
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://www.paulgraham.com/pypar.html
https://www.paulgraham.com/pypar.html

Supported by SST and used by SST

Very similar to React allowing for easier adoption

Near the top like Svelte on many aspects such as retention & interest

Cons

Incredibly small community

This has led to even slower creation of additional tooling & libraries

Less third party integrations

Despite being similar to React there are still Solid specific aspects

Very little knowledge within company

Solid’s metaframework is youngest of all

Recommendation

React is the only choice that involves no changes in the current company direction. However, in isolation or if we had the appetite for this

my recommendation would to instead utilize either Svelte or Solid . As mentioned elsewhere, I believe The Python Paradox applies

to both of these choices. Svelte has many upsides, but requires a lot more transitioning due to how different it is. Solid provides an

easier migration path from React as you can for simple components trivially port them, but suffers from a significantly smaller community

which creates more gaps in third party tooling & libraries.

With all of that said, there is likely to never be time or room to completely change to a different framework, so by default React wins.

TLDR

Use React unless there’s desire and time for something better.

Decision

The default choice for new projects will be React. However, there was strong interest in Svelte and if there is a small independent project

that is a good testbed for evaluating we’d be open to giving it a try. React Native will not be changed regardless as we do not foresee a

second mobile app.

https://www.paulgraham.com/pypar.html
https://www.paulgraham.com/pypar.html

